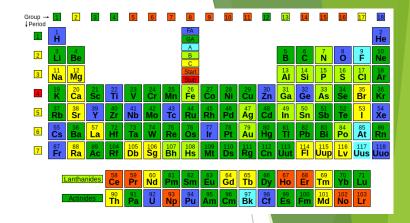
Accumulation of Toxic Metals in Bioflocs for Shrimp Culture

David Kuhn, Addison Lawrence, Jack Crocket

Shrimp culture in RAS

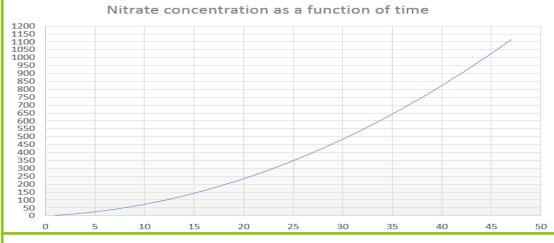
- Attracting considerable economic interest because:
 - Environmentally friendly
 - Bio-secure
 - ► Can be located inland in temperate climates
 - Year around production
- Two types of RAS
 - ▶ (1) Clear-water and (2) Biofloc
- Often conducted in lower salinity (brackish water)
- Very low water exchange rates

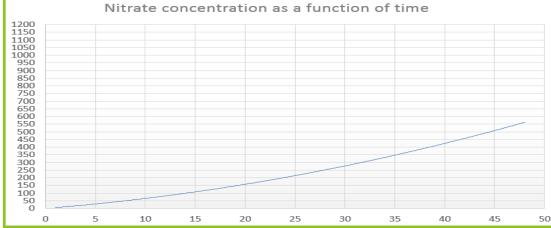
What are the challenges related to element/mineral accumulation or loss over time?

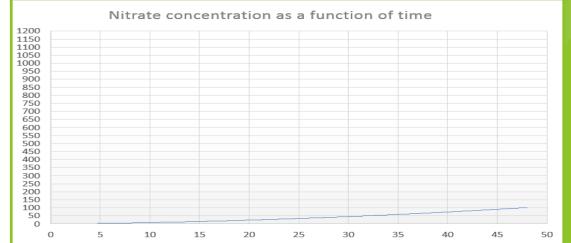


Elements and shrimp

- Beneficial elements in water
 - Calcium:
 - Exoskeleton, enzyme activator, etc.
 - Chloride
 - Regulation of osmotic pressure and acid-base balance, etc.
 - Magnesium
 - Exoskeleton, enzyme activator, etc.
 - Phosphorus
 - Exoskeleton, phospholipids, ATP, energy and cell metabolism, etc.
 - Potassium
 - Osmotic pressure, acid-base balance, muscles, and glycogen and protein syn., etc.
 - Sodium
 - Osmotic pressure, acid-base balance, transport of O2 and CO2 in hemolymph, etc.
 - Sulfur
 - Amino acids, vitamins, detox of aromatic compounds, etc.
 - Others


- Toxic elements
 - Copper
 - Cadmium
 - Chromium
 - Lead
 - Mercury
 - Manganese
 - Selenium
 - Zinc


Note: many of these are required at very low levels (micronutrients), typically delivered in the feed as part of the mineral mix

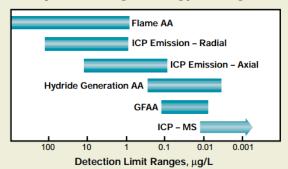

Low water exchange rate (e.g. 0.5% a day)

Moderate water exchange rate (e.g. 10% a day) →

High water exchange rate (e.g. 30% a day) →

Methods for Analyzing Elements

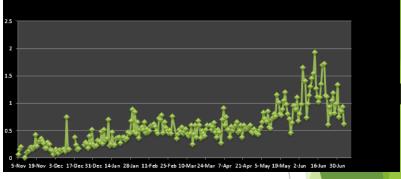
Onsite option

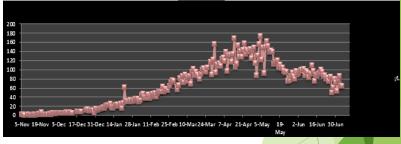

- Colorimetric methods
- HACH methods
- Meters
- Inexpensive
- Convenient
- Not accurate for some test methods

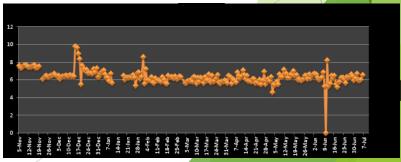
Offsite options

- Flame Atomic Absorption Spectrophotometry (FAA)
- Graphite Furnace Atomic Absorption Spectrophotometry (GFAA)
- Inductively Coupled Plasma Atomic Emission
 Spectrophotometry (ICP-AES; ICP Emission-Radial)
- Inductively Coupled Plasma Mass Spectrophotometry (ICP-MS)
- More expensive
- Less convenient
 - Universities or certified commercial labs usually required
- Extremely accurate

Typical detection limit ranges for the major Atomic Spectroscopy techniques







Record keeping

Target levels

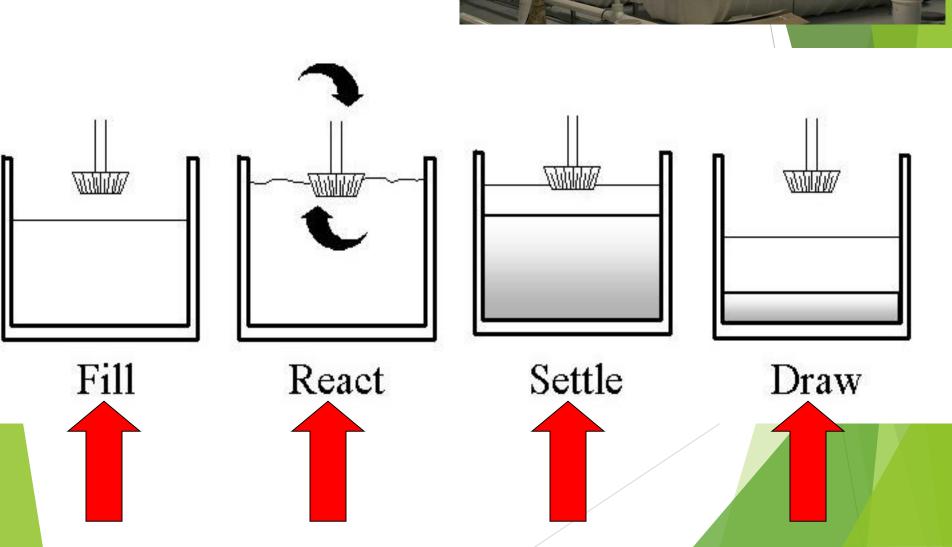
Concentration of element or ion at given salinity

			-	•
	Salinity 35 g/L	Salinity 15 g/L	Salinity 7.5 g/L	Salinity 0.5 g/L
Calcium	411 mg/L	176	88	6
Chloride	19,353	8,294	4,147	276
Magnesium	1,284	550	275	18
Potassium	399	171	86	6
Sodium	10,781	4,620	2,310	154
Sulfate	2,712	1,162	581	39
Na:K	27:1	27:1	27:1	27:1
Ca:K	~1:1	~1:1	~1:1	~1:1

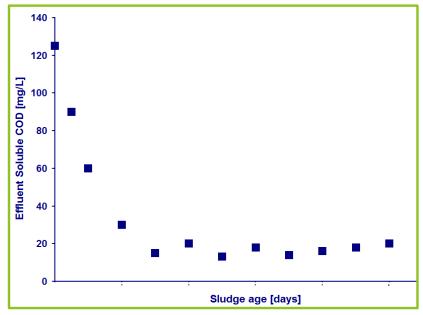
How to manage

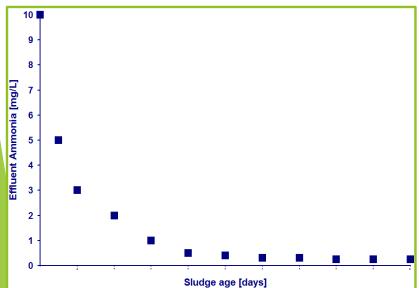
- Adjust salt and mineral levels in <u>feed</u>
- Adjust salt and mineral levels in water

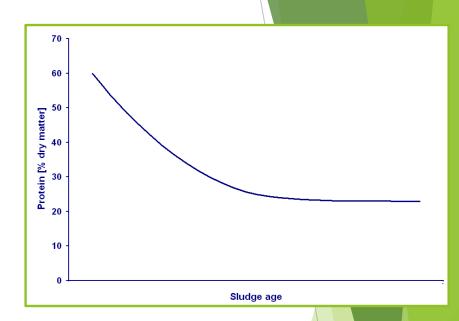
Salt/mineral	Chemical formula	Common name	Approx. cost 50 pound QTY
Calcium chloride	CaCl	-	\$20
Calcium sulfate	CaSO ₄	Gypsum	\$25
Magnesium sulfate	MgSO ₄	Epsom salt	\$25
Potassium chloride	KCl	Muriate of potash	\$60
Potassium magnesium sulfate	K ₂ SO ₄ -MgSO ₄	K-mag	\$50
Potassium sulfate	K ₂ SO ₄	-	\$85
Sodium chloride	NaCl	Salt	\$10
Synthetic sea salt	Mix	Sea Salt	\$30 to \$40 (\$12 in bulk)

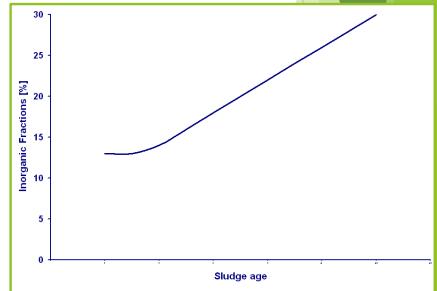

Case Study

- Bioflocs
 - Are bacteria, algae, other microorganisms, multivalent cations, exocellular polymers, uneaten feed, etc..
 - Removes nutrients (e.g. nitrogen) from the water by assimilating it into bacteria protein
 - Bioflocs serve as a food to shrimp
- Two types of biofloc technology
 - In-situ biofloc technology (common)
 - ▶ Bioflocs are produced in water with shrimp
 - C:N increased by carbon addition or using low protein feed
 - Ex-situ biofloc technology (emerging technology)
 - ▶ Bioflocs are produced externally in bioreactors
 - Carbon source not often required
 - Bioflocs can be used a feed ingredient

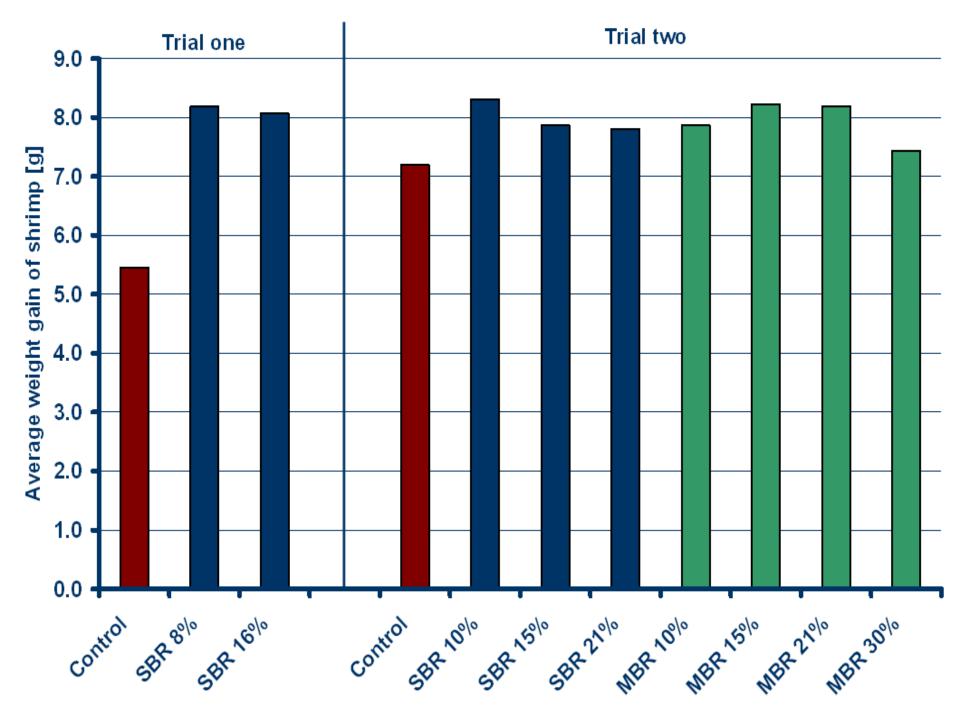



Biological reactors (e.g. SBR)





- ▶ Sludge age: average age of biofloc particle in bioreactor
 - ► Higher biofloc removal = younger sludge age
 - ► Less biofloc removal = older sludge age




- Typically operate SBR with sludge age <30 days</p>
 - Good performance of SBR
 - Harvested bioflocs to include in shrimp feed
 - Replacing fishmeal/soybean protein with bioflocs in feed always resulted in equal or significant better growth of shrimp
 - Six replicates per diet, with five shrimp per tank
 - Shared water quality
 - Isonitrogenous, isocaloric diets

- Operated SBRs with high sludge age (> 60 days)
 - ► SBR cleaned the wastewater extremely efficiently
 - Great biofloc material from an operation standpoint (settled out well)
 - ► Used in growth trial. Shrimp growth was suppressed by nearly 30%!
 - ► WHY?
 - Conducted mineral analysis. Mn was between 0.9 and 1.1% in biofloc
 - ► Translated to approximately 0.1 to 0.3% Mn in the shrimp diet (depending on biofloc inclusion level)

- Laboratory trial
 - ▶ 5 different diets (0.02, 0.05, 0.10, 0.20, and 0.30% Mn)
 - ▶ 6 replicates per diet
 - ▶ 6 week study
 - ▶ 8 shrimp per 24-L tank

